
VM-MAD Documentation
Release development (SVN Revision)

Simon Barkow, Peter Kunszt, Sergio Maffioletti, Riccardo Murri, Christian Panse

November 26, 2012





CONTENTS

i



ii



VM-MAD Documentation, Release development (SVN Revision)

Contents:

CONTENTS 1



VM-MAD Documentation, Release development (SVN Revision)

2 CONTENTS



CHAPTER

ONE

INSTALLATION OF VM-MAD

Author Riccardo Murri <riccardo.murri@gmail.com>

Date 2010-10-06

Revision $Revision$

1.1 Installation

These instructions show how to install VM-MAD from the source repository into a separate python environment
(called virtualenv). Installation into a virtualenv has two distinct advantages:

• All code is confined in a single directory, and can thus be easily replaced/removed.

• Better dependency handling: additional Python packages that VM-MAD depends upon can be installed even if
they conflict with system-level packages.

0. Install software prerequisites:

• On Debian/Ubuntu, install packages: subversion, python-dev, python-profiler and the
C/C++ compiler:

apt-get install subversion python-dev python-profiler gcc g++

• On CentOS5, install packages subversion and python-devel and the C/C++ compiler:

yum install subversion python-devel gcc gcc-c++

• On other Linux distributions, you will need to install:

– the svn command (from the SubVersion VCS)

– Python development headers and libraries (for installing extension libraries written in C/C++)

– the Python package pstats (it’s part of the Python standard library, but sometimes it needs separate
installation)

– a C/C++ compiler (this is usually installed by default).

1. Choose a directory where the VM-MAD software will be installed; any directory that’s writable by your Linux
account will be ok.

If you are installing system-wide as root, we suggest you install VM-MAD into /opt/vm-mad.

If you are installing as a normal user, we suggest you install VM-MAD into $HOME/vm-mad.

2. If it’s not already installed, get the virtualenv Python package and install it:

3

mailto:riccardo.murri@gmail.com
http://pypi.python.org/pypi/virtualenv/1.5.1
http://subversion.tigris.org/
http://pypi.python.org/pypi/virtualenv/1.5.1


VM-MAD Documentation, Release development (SVN Revision)

wget http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.5.1.tar.gz
tar -xzf virtualenv-1.5.1.tar.gz && rm virtualenv-1.5.1.tar.gz
cd virtualenv-1.5.1/

If you are installing as ‘root‘, the following command is all you
need:

python setup.py install

If instead you are installing as a normal, unprivileged user,
things get more complicated::

export PYTHONPATH=$HOME/lib64/python:$HOME/lib/python:$PYTHONPATH
export PATH=$PATH:$HOME/bin
mkdir -p $HOME/lib/python
python setup.py install --home $HOME

(You will also need to add the two ‘export‘ lines above to the
‘$HOME/.bashrc‘ file -if using the ‘bash‘ shell- or to the
‘$HOME/.cshrc‘ file -if using the ‘tcsh‘ shell.)

In any case, once ‘virtualenv‘_ has been installed, you can exit
its directory and remove it::

cd ..
rm -rf virtualenv-1.5.1

3. Create a virtualenv to host the vm-mad installation at the directory you chose in Step 1.:

virtualenv $HOME/vm-mad # use ’/opt/vm-mad’ if installing as root
cd $HOME/vm-mad/
source bin/activate

4. Check-out the vm-mad files in a src/ directory:

svn co http://vm-mad.googlecode.com/svn/trunk src

5. Install the vm-mad in “develop” mode, so any modification pulled from subversion is immediately reflected in
the running environment:

cd src/
env CC=gcc ./setup.py develop
cd .. # back into the ‘vm-mad‘ directory

This will place all the VM-MAD command into the vm-mad/bin/ directory.

1.2 Upgrade

These instructions show how to upgrade the VM-MAD scripts to the latest version found in the GC3 svn repository.

1. cd to the directory containing the VM-MAD virtualenv; assuming it’s named vm-mad as in the above installa-
tion instructions, you can issue the commands:

cd $HOME/vm-mad # use ’/opt/vm-mad’ if root

2. Activate the virtualenv

4 Chapter 1. Installation of VM-MAD



VM-MAD Documentation, Release development (SVN Revision)

source bin/activate

3. Upgrade the vm-mad source and run the setup.py script again:

cd src
svn up
env CC=gcc ./setup.py develop

1.3 HTML Documentation

HTML documentation for the VMlib programming interface can be read online at:

http://vm-mad.googlecode.com/svn/trunk/doc/html/index.html

You can also generate a local copy from the sources:

cd $HOME/vm-mad # use ’/opt/vm-mad’ if root
cd src/docs
make html

Note that you need the Python package Sphinx <http://sphinx.pocoo.org> (at least versdion 1.0) in order to build the
documentation locally.

1.3. HTML Documentation 5

http://vm-mad.googlecode.com/svn/trunk/doc/html/index.html


VM-MAD Documentation, Release development (SVN Revision)

6 Chapter 1. Installation of VM-MAD



CHAPTER

TWO

VM-MAD MODULES

2.1 orchestrator

2.2 simul

2.3 ge_info

7



VM-MAD Documentation, Release development (SVN Revision)

8 Chapter 2. VM-MAD modules



CHAPTER

THREE

COMMANDS IN VM-MAD

Author Tyanko Aleksiev <tyanko.alexiev@gmail.com>

Date 2012-04-29

Revision $Revision$

3.1 Commands

This article explains the commands available inside VM-MAD. More precisely, it gives an initial overview of the
command, followed by a description of the possible interactions with other commands. References to input/output
files’ format is also being provided.

3.2 Simulation

VM-MAD has an integrated simulation suite which enables processing SGE accounting data. The main idea of this
implemetation can be associated with the answer of the question: “What would be the evolution of my cluster’s queue
during the time if I had on my disposal X always running servers and the possibility to spawn Y Virtual Machines on
demand?”. Where X and Y are variables that can be chosen by the final user. The simulation process involves three
different parts:

• provided accounting data has to be first elaborated from the distil.py tool. For more information see the Distill
section,

• once the accounting data is available a simulation can be started using the simul.py tool,

• finally the plot_workload.R R script is used for graphically represent the results.

The output produced by the distil.py tool is needed before starting a new simulation. The Distill Output section
describes in more detail what kind of information the distill tool is providing to the simulator suite.

A new simulation can be set-up by using the provided options, to see all of them:

(vm-mad)vm-user@test:~ ./simul.py --help
usage: simul.py [-h] [--max-vms N] [--max-delta N] [--max-idle NUM_SECS]

[--startup-delay NUM_SECS] [--csv-file String]
[--output-file String] [--cluster-size NUM_CPUS]
[--start-time String] [--time-interval NUM_SECS] [--version]

Simulates a cloud orchestrator

optional arguments:

9

mailto:tyanko.alexiev@gmail.com


VM-MAD Documentation, Release development (SVN Revision)

-h, --help show this help message and exit
--max-vms N, -mv N Maximum number of VMs to be started, default is 10
--max-delta N, -md N Cap the number of VMs that can be started or stopped

in a single orchestration cycle. Default is 1.
--max-idle NUM_SECS, -mi NUM_SECS

Maximum idle time (in seconds) before swithing off a
VM, default is 7200

--startup-delay NUM_SECS, -s NUM_SECS
Time (in seconds) delay before a started VM is READY.
Default is 60

--csv-file String, -csvf String
File containing the CSV information, accounting.csv

--output-file String, -o String
File name where the output of the simulation will be
stored, main_sim.txt

--cluster-size NUM_CPUS, -cs NUM_CPUS
Number of VMs, used for the simulation of real
available cluster: 20

--start-time String, -stime String
Start time for the simulation, default: -1

--time-interval NUM_SECS, -timei NUM_SECS
UNIX interval in seconds used as parsing interval for
the jobs in the CSV file, default: 3600

--version, -V show program’s version number and exit

The --max-vms and --cluster-size options are probably the most important as they permit you to simulate
different configuration scenarios. The --max-vms allows you to set how expandable, in terms of VMs, your cluster
could be. The --cluster-size options permits you to fix the simulated dimension of your locally availbale cluster.

Once the simulation is completed you can compute the results using the plot_workload.R script:

(vm-mad)vm-user@test:~ ./plot_workload.R simulation_output_file output_file

Two files are produced at the end: output_file.pdf and output_file.eps. They represent what would be the graphical
evolution of your queue with the specified options.

3.2.1 Distill

The purpose of the distil.py tool is to elaborate different kind of scheduling information and produce an output
in CSV format legible from the simulator suite. The following data input formats are currently recognized by the tool:

• accounting data provided by SGE,

• the output given by querying the SGE scheduler with the qstat -xml command. (working in progress)

You can see all the provided options by simply doing ./distil.py -h

Distill Output

The output produced by the distil.py is in the CSV format tool has the following aspect:

JOBID, SUBMITTED_AT, RUNNING_AT, FINISHED_AT, WAIT_DURATION, RUN_DURATION
1, 1282733694, 1282733707, 1282733785, 13, 78
4, 1282736899, 1282736911, 1282737239, 12, 328
6, 1282738136, 1282738141, 1282738141, 5, 0
7, 1282738434, 1282738441, 1282738568, 7, 127
8, 1282739338, 1282739342, 1282740438, 4, 1096

10 Chapter 3. Commands in VM-MAD



VM-MAD Documentation, Release development (SVN Revision)

The first row of the file is quite self-explaining about what kind of information, each of the columns, is containing.

3.2. Simulation 11



VM-MAD Documentation, Release development (SVN Revision)

12 Chapter 3. Commands in VM-MAD



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

13


